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Abstract

The multifractal model of asset returns captures the volatility persis-
tence of many financial time series. Its multifractal spectrum computed
from wavelet modulus maxima lines provides the spectrum of irregular-
ities in the distribution of market returns over time and thereby of the
kind of uncertainty or "randomness" in a particular market. Changes in
this multifractal spectrum display distinctive patterns around substantial
market crashes or “drawdowns." In other words, the kinds of singularities
and the kinds of irregularity change in a distinct fashion in the periods
immediately preceding and following major market drawdowns. This pa- £ecy s
per focuses on these identifiable multifractal spectral patterns surround-
ing the stock market crash of 1987. Although we are not able to find
a_uniquely identifiable irregularity pattern within the same market pre- -
ceding different crashes at different times, we do find the same uniquglywﬁqi 1{% M
identifiable pattern in various stock markets experiencing the same crash
at the same time. Moreover, our results suggest that all such crashes are 4 a2 i
preceded by a jradual increase in _the weighted average of the values of

the Lipschitz regularity exponents, under low dispersion of the multifrac-

tal spectrum. At a crash, this weighted average irregularity value drops what Loffuﬂﬂ-&
to a much lower value, while the dispersion of the spectrum of Lipschitz

exponents jumps up to a much higher level after the crash. Our most AMD
striking result, however, is that the multifractal spectra of stack market
returns are not stationary. Also, while the stock market returps show g

global Hurst exponent of slight persistence 0.5 < H < 0.7, these spectra

tend to be skwed towards anti-persistence in the returns.




1 Introduction

The accuracy of measured financial risk models crucially depends on_the as-
sumptions about the time-frequency properties of asset prices. These time-
frequency properties of market data during financial crises are very different
from the propert‘ies of the data obtained from normally functioning markets.
This corroborated observation may require considerable adjustment of the exis-
tent market risk monitoring techniques, which were developed for non-extreme
financial market behavior.!
The classical assumption of independent and stationary (i.i.d.) market re-
turn innovations implies that the degree of fatness of the distributional tails
remains the same as the investment horizon extends. But under extreme cir-
cumstances this can drastically change. For example, Johansen and Sornette
(2000) find that such asset return innovations exhibit strong positive correla-
tions exactly at the time of eme events. Dacorogna et al. (1993) find the
same for FX returns. Muzy et al. (2001) and Breymann et al. (2000) show
that the return volatility displays different long-term correlations from large to
small time scales. Therefore, using a fixed time scale is found to be unsuitable
for an analysis of the dynamics of such extreme market price moves. Low-order
statistics with adjustment to the varying time scales of the market may provide
more efficient descriptio
Dacorogna et al. (1996) propose to expand the time periods of high volatil-
ity and contract those of low volatility to eliminate this so-called time-warping.
However, Los (2003) conjectures that these periods of condensation and rar- D W
_qﬁzction of market returns are essential for a proper functioning of the financial ‘5 S@ns & M’
markets. In periods of condensation, i.e., in peruiods of faster trading, more
liquidity is provided to the market within the same real time unit than in peri- Vel
ods of rarefaction, i.e., in periods of slower trading. Since fixed time scales are — ————""—""~
thus not adequate for adequater describing all volatility or risk level changes WQQJU’ Lo s
in the market, a better insight into the dynamics of financial markets can be W@

achieved with a time-adaptive framework that simultaneously takes all time-
scales of the statistical distributions of the return innovations into account, i.e., W

with a_ complete time-frequency analysis.

Mallat’s (1989) wavelet multiresolution analysis (MRA) can analyze all these — Ta ol
varying modeling descriptions. It produces a complete time-scale, or time-
frequency, representation of the statistical properties of a financial time series
and it can successfully be extended to pattern recognition and crash (= dis-
continuity, or singularity) detection (Mallat and Hwang, 1992). Furthermore,
wavelets allow for multifractal analysis of asset returns with proven advantages
to the usual structural function approach. The multifractal model of asset re-

turns can describe important empirical regularities observed in financial time

! This paper is based oun the snccesfully defended doctoral thesis of Rossitsa Yalamova,
PhD, Kent State University, Kent, OH, USA, December 2003. Cornelis Los , PhD was her
Supervisor and Chairman of her Doctoral Thesis Defense Committee. The constuctive citique
and editorial suggestions of the other two Committee members, Kazim Khan, PhD, and
Federick Schroath, PhD, are gratefully acknowledged.




series, including fat distributional tails (= non-normal occurrence of extreme
events) and long memory, and has now a firm theoretical mathematical finance
foundation (Elliott and van der Hoek, 2003). The local variability of the irreg-
ularities of a multifractal process is highly heteropeneous. It should therefore W
be characterized by a spectrum of local Holder exponents, instead of by one
monofractal Hilder, ¢.e., one Hurst exponent.
Johansen and Sornette (1998) apply conventional statistical analysis to mar-
ket Indices and find that the largest crashes may be extreme outliers trig-
gered by amplifying factors. Stock markets in normal times exhibit simple self-
organization with leptokurtic distributions of their return innovations, implyin
that normal ”noise”_trading combines with fairly regular, but more-frequent-
than-nornmal occurrence of extreme events. The multifractal model of a asset Y
returns is suitable to model the moment scaling, the volatility persistence, and B"""f"" %
the abnormally occurring outliers observed in financial time series (Calvet and MM AR

Am—

Fisher 1999},

The conventional statistical financial models, which are based on the com-
plementary assumptions of ergodicity and stationarity cannot properly analyze

#
crashes, precisely because the statistical properties of such highly nonstation WJ Lﬂ—t‘d aﬂ‘g
ary data are very different from the statistical properties of stationary data. & W

Therefore, a model based on data obtained in stationar and stable times i NM
not of much use in times of crises. Indeed, Morris and Shin (1999), Danielson
and Zigrand (2001), Danielson et el. (2001), and Los (2003) suggest that most
existent statistical modeling in finance is based on a misunderstanding of the
properties of financial risk (= volatility = energy = power), be it in normal

trading times or in critical times.

Stock market criticality suggests that stock market crashes are preceded ':,i 4 4;
by increased susceptibility and pre-cursory signals similar to critical instability .
i _physical fluid dynamics. Therefore, a_multifractel spectrum (MFS) analysis W
around such significant drawdowns may reveal the existence of an identifiable
EI—'é-cursory pattern.
Thus the objective of this paper is to extract empirically descriptive infor-
mation from the data about the dynamics of stock market returns by studying
the 1087 stock market crash, when the stock ,arket was drawn down by 26% in
fess than two days. According to Sornette and Johansen (1998) stock market
behavior before a crash is related to the transient behavior preceding a set of / ?g' ?,
steady state equilibria. This observation enables, perhaps, early detection (and
warning) of stock market crashes. It is already known that a normally function-
ing financial market exhibits properties of a complex dynamical system.
Criticality of the market pricing process may imply particular scale invari-
ances in the rate of return process. Recently, the analogy of financial crashes #
to_critical energy (= risk) diffusion points in fluid dynamics and in statistical %
‘mechanics has begun to be rescarched (cf. Los, 2003, for an in-depth review). ﬂ@
For example, Johansen et al. (2000) claim that log-periodic oscillations appear
in the price of the asset just before the critical date of a crash. Such oscillations <
can be detected by the scalograms of the MRA.




2 Methodology

The financial markets have been shown to be similar to complex dynamical

systems (Johansen et al., 2000). The idea to regearch stock market data during
crashes is based on scientific evidence in physics that such complex dynamical
systems reveal their properties better under stress than in normal conditions.
Wavelet analysis allows to test for nonlinear long term dependence even in wm
the presence of trends. In particular, wavelet MRA allows the identification of
MFES, or Hausdorff fractal dimension, of financial time series and of the dimen-
sionally most prevalent monofractal Hurst exponent.

This monofractal Hurst exponent H of daily market index data is calculated ﬁ/
to determine the global or average statistical self-similarity of the market return W

series istical self similarity is manifest in the power law spectrum of
the serief. First, e selected daily index price series of DJIA, NASDAQ and
S&P500 o mately 2000 observations each and computed the monofractal

H exponent using two methods. In this way we were able to assess somehwat the
accuracy of such calculations and the stability of the computed H exponent, by
comparing these two replication results. We found many differences in the values
of the obtained Hurst exponents for the same series over various time intervals.”
Differences in the value of the scaling Hurst exponent H over time are, of course,

possible_indications of the exjgtence of multifractality, as Mandelbrot (1997)

pedrbed out, -

x4 we computed multifractal spectra. Regular time series can be fitted by 7""3"“— P Gndieta
xpolynomial dynamic process, or Taylor expansion. The degree of irregularity

of the residuals of such a Taylor polynomial is measured by the Lipschitz reg- 1P schite

ularity exponent vz, which ig the exponents of the residual term of the Taylor “émponepNt
scrics expansion. The Lipshitz o7, measures the degree of irregularity, or "ran-

domness," of a time series, For each market index series, a singularity spectrum

of these Lipschitz y’s is computed following a five-step-procedure, based on

the exact results of Bacry, Muzy and Arnéode (1993; ¢f. Los, 2003, Chapter 8

for a detailed description).

ﬂq:l“, The data consists of daily returns of stock market indices before and after the .

market crash of October 1987. The multifractal spectra of these observations m Fs S"ib"jd-
are calculated on a 512-day moving window. The changes in the multifractal

spectra over time are then described mainly by the weighted average of the

resulting spectra of the identified Lipschitz ars. The weighted moving average

is computed using the spectra’s Hausdorff dimension values D{a ) as weights.

We also document the minimum, oy, and maximum oy at each point in time

for a better characterization of the changes in the multifractal spectra, like the

changes in their skewness.

2 For some other recent empirical examples of the identification of these monofractal expo-
nents for various markets in Latin America and in Europe, ¢f Kyaw and Szong, 2003 and
Lipka, 2003.



3 Functional Irregularity or Uncertainty

3.1 Geometrical Measurements - Dimensions

The (ir-)regularity of a function can be measured geometrically by the Hausdorff

dimension. The Hausdorfl dimensions D{a) of a bounded set in n - dimensional
real space is measured by the minimum number N of balls with radius a, needed
to cover the set when a — 0.

D(a) = lim &) 1
a—t loga=—!

When D{(a) is an integer, the Hausdorff dimension coincides with the clas-
sical Buclidean dimension. The Hausdorff dimension can be computed from
the Legendre transform of the scaling exponents {q) of the partition function
Z(qg, a), as explained below, where ¢ is the moment order and a is the scale.

This wavelet transform modulus maxima (WTMM) method overcomes the
limitations of the structure function approach of Parisi and Frisch (1986), who
computed the Hausdorff dimension, or singularity spectrum directly from the
scaling exponent of a p-order structure function. Muzy et ol.(1993) prove that
the WTMM based method is more appropriate for multifractal description of
self-affine distributions.

3.2 Analytical Measurements - Functional Spaces
The analytical way of measuring the {ir-jregularity of a time series is to consider

a family of dynamic functional spaces in their local, or pointwise version. The
local information about such spaces is given by the Holder exponent at each
point, while all such information is captured by the Hausdorff dimensions or
multifractal singularity spectrum D{ay). Therefore, the Hausdorff dimensions
of a set of Lipschitz-Halder exponents oy form a MFS that characterizes the
set of singularities of that particular time series. If there is only one Hausdorff
dimension in the spectrum for one particular Lipschiotz «p, the time series
exhibits only one kind of fractional irregularity or "randomness" and is thus
monofractal. But more often it is found that several different Lipschitz ars
exist in a time series with singularities and then the time series is multifractal.

The continuous wavelet transform is useful for obtaining information about
the local scaling behavior of functions by computing the maxima lines in the
wavelet scalograms, i.e. the matrices of squared wavelet resonance coefficients
(= correlation coefficients beteen the time series and the various orthogonal
wavelet bages). Maxima lines follow the local maxima of the wavelet resonance
cofficients in the scalogram over all available scales. The wavelet resonace coef-
ficients of the scalorgram measure the degree of local correlation of a time series
with the wavelet basis of a particular resolution scale. Thus maxima lines can

carry information about singularities across the various resolytion scales. These

time resolution scales are proportional to the inverses of the radian frequencies:
an~ .

P——
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If the empirical time series contains only cusp-type singularities, the wavelet ww

transform modulus maxima {WTMM) provide very reliable estimation of the
singularity spectrum (). However, in the presence of oscillating singularities,
an_additional oscillating exponent besides the Hausdorf dimension D{(ay)_is
needed to describe the behavior of the time series. In this paper we ignore
this latest theoretical advance in the measurement of singularities, although
we acknowledge that it may be important for our future research. The reason
for abandoning that project is that there is not vet a reliable comgutationa
algorithm to compute the canonical characterization of singularities in both
their real and imganinary dimensional components, only an algorithm for the
real part of the dimension D(c). Consequently, we were unable to detect any
oscillating singularities and were able to characterize only the non-oscillatin,
singularities, i.e., the non-periodic_discontinuities of the stock market return
series and not the periodic ones.

@twise Hélder Exponent) Our formal approach is as follows. The point-

wise Holder exponent of a function f{x) at an observed point zg is the supremum
of the Lipschitz-ay, of the series x such that:

| (2} ~ Palz ~ 20)| < Clz — zo|*", (2)

where C' is a constant and F, is a polynomial of degree n. If f(z) is Lipschitz
ey, for e, > n, then f(z) is » times continuously differentiable in zp and the
polynomial P, (z) is the first n -+ 1 terms of the Taylor series of f{x) in zg. We
say that f(z) is uniformly Lipschitz af on an interval [a,b] if the difference
between f(z) and the first n terms of the Taylor series defined with respect to
the local point zg, satisfy the above equation for any (x, zp) € [a, b]z.

The pointwise Hblder exponent of f is defined by the supremum:

ar(z) =sup{ag : f(z) € C*} (3)

3.3 Measurement Methodology

\ Global Self-Similarity Statistic} Recent empirical studies suggest that mar-

ket price chapges exhibit certain properties: the price increments, or return
g -

innovations, are not correlated, but their volatilities are power-law-dependent,

and the shape of the probability density function (pdf) of the price increments ‘VYJ;"‘ (A2
epends on the time scale: from Gaussian at large time scales of a month and E?/l. OKUF-

more, to stable Jeptokurtic distributions with fat tails at fine scales of intra-day L

data, as shown in, for example, Bouchaud and Potters (2003).
A random process z(t) is said to be self-similar with the Hurst exponent T
if for any scale a > 0 it obeys the scaling relation

z(t) £ aHz(at) (4)



N

Thus a self-similar process is monofractal when its singularity spectrum
D{wp) = D(H) is reduced to a single point and the Lipschitz-Holder af ex-
ponent is the same H at any point in time. Its increments display long range
dependence and their autocovariance function decays as

— 0_2,,,_2H71 / (5)

¥(7}

as the horizon 7 — +oc.

The Hurst exponent provides us with a means to analyze the global depen-
dence characteristics of a financial time series and to determine if the statistical
observations are persistently, neutrally or anti-persistently dependent. When
the Hurst exponent is 0 < H < 0.5, the time series is called anti-persistent.
Fractional Brownian Motion (FBM) increments with anti-persistence diffuse

more quickly than Geometric Brownian (GBM) increments with the neutral
H =0.5. Such an anti-persistent FBM returns continuously to the initial point.
The GBM with H = 0.5 has independent increments, without any particular
tendency, and its autocovariance is a constant ¥{1) = ¢?, no matter what the
time horizon. When 0.5 < H < 1, the time series is persistent and its time

adjusted volatility lasts forever.
rovides three graphs of Fractional Brownian Motion (right) with

H = 0.2,0.5,0.8 {top to bottom on right), with their respective increment
processes on the left. Notice that the anti-persistent increments are "denser"
and reverse more quickly than the neutral increments, giving the GBM process
a more "ragged" appearance. The persistent increments are less "dense" than
the neutral increments, giving the GBM process a more "smooth" appearance.

The risk (= volatility = energy = power) spectrum P(w) can be used to
determine the kind of self-similarity or degree of persistence of a time series,
since it can easily be established, by taking the Fourier Transform of the guto-
covariance function, that:

-~

Plw) c w™7 {6)

with the power exponent v = 2H = 1 and the frequency proportional to the
inverse of the time scale: w ~ a1, such that the monofractal Hslder exponent
H can be directly identified by plotting In P{w) against the radian frequency w.
Such a risk spectrum P{w) can be most accurately measured by a scalegram,
or averaged scalogram, based on the complete wavelet multiresolution analysis
(MRA), based on orthogonal wavelet bases, which have finite support, instead of
the orthogonal sinuses and cosinuses of Fourier analysis, which have infinite sup-
port and thus lead to overlapping and to statistical "double-counting." Wavelet
multiresolution based on ortgonal wavelet bases is exhaustive and complete and

does not lead to statistical "double-counting."

Fleming et al. (2001) extract the set of wavelet detail coefficients {d;:}
using a wavelet, ¥(t) with N vanishing moments. One can identify the Hurst
exponent of the series from the variances of wavelet detail coefficients based on
dyadic scaling, as follows




Var(d;z) oc 2797 (M

This is similar to a conventional power spectrum, whereby the financial risk
= power of the time series is measured by its variances. If 0 < v < 2N, one can
lot the log, Var(d; x) versus the level of decomposition _7 to produce a straight
line of slope —y for the given time series. Deviations in these log-variance or
power plots from a straight line have been shown (Los, 2003) to reveal coherent
risk structures present at a given scale with an increase in the variance. Suc
periodic risk structures are often induced by institutional constraints, like the
observed diurnal cycle of trading, which is caused by the absence of stock trading
floors in the Pacific Ocean. During the half to three-quarter day of trading the
electronic trading book gets passed around the world, except in the Pacific
QOcean,
[Wavelet analysisyis thus the basic tool to study the scale dependent properties
of data directly via the coefficients of time-scale wavelet decomposition, since LUQU
almost nothing needs to be assurned about the characteristics of the underlying %}-
trading processes. For example, the time series process of market returns does
not need to be bounded, so that sharp discontinuities and drawdowns in the
pricing process can easily be analyzed, without any assumption of possible jurn

EZI'O(DE!SSGS.

Classical Multifractal Formalisml - Series Estimation The concept_of .
multifractality originated from a general class of multiplicative cascade models mﬂ-ﬂi}fl{‘%
introduced by Mandelbrot (1974). This multifractal formalism was originally M
established to account for the statistical scaling properties of singalar measures ( 5. N4 ow
determined by their singularity spectrum D(ey ). Fractals appear not only as %‘t)

gingularity measures, but also as time series o singularities, Parisi and Frisch

(1985) proposed extracting the MFS of the velocity field from the inertial scaling
properties of multidimensional structure functions

"4
Sq(7) = ((dm7)?) ~ 74, (8)

where Jz, is a longitudinal velocity (or rate of return) increment over a time
horizon or distance 7, integer order coefficient ¢ > 0 and £, is the scaling
exponent for that particular order moment. The inner product of the velocity
incerements {{dz,)?) computes a moment of order g, which scales over time
horizon 7 with scaling exponent £,. This scaling exponent can be moment-
dependent.

‘This structure function approach has serious drawbacks ss shown by Muzy
et al. (1993). This approach fails to fully characterize the singularity spectrum
due to some fundamental limitations in the range of accessible irregularity ex-
ponents: it fails to detect the part of the D(ar) spectrum which lies beyond
the value o > 1, for example. This may not be such a large deficiency since
a Lipschitz cvy, > 1 implies that at least one extra unit order of differentiation
should be included in the Taylor expansion, instead of computing just (relative)
first. differences.

[




Multifractal formalism based on wavelet transform modulus maxima (WTMM
allows us to determine the whole singularity spectrum D(e 1.) directly from any
experimental signal or time series (Muzy et al, 1991), It works in most sit-
uations and provides a unified multifractal description of self-affine distribu-
tions. The following procedure of computing the multifractal singularity spec-
trum based on WTMM is described in Los (2003, Chapter 8). For this paper
we developed computational algorithms in MATLAB and used fast-computing
C/C++ based programs.

First, a decay scaling exponent 7(g) is computed as the slope of the dyadic
logarithm of Gibb’s power partition function:

log, Z(g,a) = 7(q) logy a + C(g), (9)

where ¢ is the power of the moments and a represents the scale. The partition
function Z{g,a) can be computed from the sum of the modulus maxima raised
to the power of g. The MFS D(ay) can then be found as the inverse Legendre
transform of the scaling exponent (g).

Because this procedure is based on Gibb’s statistical averaging or partition
function Z(g,a), there is no explicit local information present in the resuiting
scaling estimates. Therefore, the usefulness of the partition function method
resides in the fact that it obtains information on global average moments, which
tend to be more stable than pure local information. Its disadvantage is that,
for the same reason, it tends to obscure this local information. Therefore, in
order to capture possible changes in such global average exponents over time,
we calculate the MFS on & 512-day moving window with daily increments.

We implement the following steps:

3.3.1 Compute the wavelet transform W(r,a) for all trans-
lations and dilations:

A wavelet is simply a finite energy function with a zero mean. The wavelet
transform is defined by the continuous time correlation between the time series
and the particular wavelet of horizon 7 and scale a:

+00

W(T, a) = f(t)"/)'r.a(t)dts (10)

—00
where the base atom v, ,(t) is a zero average function, centered around zero
with finite energy, volatility or risk, The family of wavelet vectors is obtained
by translations and dilatations of the basic ("mother"} wavelet atom:

1 t—T1

Ilnb‘r,u(t) = T')b(

) (11)

This wavelet is centered around 7, like the (windowed) Fourier atom. If 7 de-
notes the frequency center of the base wavelet, then the frequency center of a
dilated wavelet is £ = n/a. The wavelet transform has a time frequency reso-
lution which depends on the scale a. It is a complete, stable and potentially

a a



redundant representation of the signal or time series. Orthogonal wavelets pro-
duce complete, exhaustive and non-redundant analysis. The analyzing wavelet
1p is viewed as a (Heisenberg) box of particular shape and the scale g is its
relative size.

The scalogram of a signal is defined by the array of squared wavelet resonance
coeflicients {= "coefficients of determination") according to time dilation 7 and

scale a:
2

Pu(r,8) = [Wi(r,a)ff = \W(fr, ) (12)

The scalogram is therefore a 2-dimensional array which gives us normalized
risks or volatilities across time and scale (= inverse of frequency). It analyzes
over time and scale how well the time series conforms to the wavelets at each
time horizon and at each scale. For this procedure we actually use a Gaussian
wavelet basis, following Mallat’s (1998) procedure. First, the wavelet transform
W (r,a) for all translations T and all scaled dilations a is obtained. The largest
dyadic scale a = 2 depends on the number of available time series observations.

3.3.2 Find wavelet transform modulus maxima (WTMM)
O

T each scale o

The modulus maxima (largest wavelet transform coefficients) are found at each
scale a as the suprema of the computed wavelet transforms such that:
oW {(r,a)

= =0 (13)

The advanbtage of the Gaussian wavelet is that it can be shown that the an-
alyzing wavelet ¢ is the N-th derivative of the Gaussian function, where the
order of the differentiation is related to the scale a:

M (z) = d¥ (e~ F) /™. (14)

as is shown in Fig. 2.

In order to estimate the Liptschitz exponents up to a maximum value N, we
need a wavelet with at least N vanishing moments. The Gaussian wavelet has
compact support and it is also NV times continuously differentiable, therefore it is
appropriate for calculation of local maxima. Using wavelets with more vanishing
moments has the advantage of being able to measure the Lipschitz regularity up
to a higher order and increases the number of maxima lines. Mallat and Hwang
(1992) recommend the Gaussian wavelet for singularity detection. For most
types of singularities, the number of maxima lines converging to the singularity
depends upon the number of local extrema of the wavelet itself.

These WTMM are positioned on connected curves, or maxima lines, like the
top ridges of mountain ranges. When the analyzed signal has a local Halder
exponent ajg(#g) < N at point g, there is a maxima line pointing at zg.
Thus each maxima line displays the hierarchical organization of the various
singularities.

10



3.3.3( Step 3:)Compute Gibb’s partition function based on wavelets

The originality of the WTMM method is in the calculation of the partition func-
tion Z{g,a) from these maxima lines. The time scale partitioning given by the
wavelet tiling defines the particular Gibb’s partition function. A matrix contain-
ing the maxima lines (maxmap) from the previous step allows the computation
of Gibbs™ partition function, where a is the scale, e.g., a =27, 7 =1,2,..

Z(g,0) = 3 _sup|W (,a)[" (15)

This partition function effectively computes the moments of the absolute
values of the wavelet resonance coeflicients W(7,a). There is an analogy between
the classical partitions defined for measures and the one provided by the wavelet
transform used for functions. The supremum allows us to define a scale-adaptive
partition preventing divergencies for negative values of the moment order g.

3.3.4 (Step 4} Compute the decay scaling exponent 7(g)
The slope in the double-logarithmic plot

logy Z(q,0) & 7(g}log, a + C(g) (16)

allows the computation of the decay scaling exponent 7(g). The scaling exponent
7(g) is the Legendre Transform of the MFS D(ev;,) for self-similar time series and
relates the fractal dimensions to the order g of the partition function Z(q, a).

The general idea is best explained in one dimension. For each function f{x)
we define a new function £f(z) called the Legendre transform. We do this as
follows:

Define z = % which relates the new variable z to the old variable z. The

2
condition g—wé # 0 guarantees that we can find the inverse function z(z). Hence,
we have a unique relation between = and 2. Now consider the mapping
df

z—>x: ma(m) — fz) =az— f(z) = Lf(2) (17)

This defines the Legendre transform of the function f. It is a very special change
of variables, and can also be written as

Lf(z) = zx(z) — f(z(2)) (18)

Note that simultaneously the variable x is changed to the derivative and modify
the function modified.

The decay scaling exponent 7(g) is defined by the power-law behavior of
Gibb’s partition function in the limit when the scale @ — 0. Using the property
of self-similarity it is easy to find that the partition function is proportional to
the scale with the scaling exponent r(q) for @ — 0 (Los, 2003):

Z(g,a) ~ a™@

11



Thus, this exponent measures the asymptotic decay of the partition function at
fine scales. In other words, the partition function is scale dependent and it is
this scale depenence that is exploited to find the MFS D(«r).

3.3.5 Compute the MFS D(ay)

By using both the scaling behavior of the wavelet transform W (7, a) along the
maxima lines and the definition of the singularity spectrum, we can compute
the MFS D{cy) as follows:

D(ar) = minlaH - 7(g)] (19)
The moments of a self-similar process X (t) satisfy the expectational equa-
tion:
EIX(®)|" = BIX@I . 11 (20)
Therefore, the relation
EUJ(;Q) = ngi(”f(qu/?)’ (21)

suggests that self-similarity can be detected by testing the linearity of 7(q) rela-
tive to the order ¢. From the properties of the Legendre transform we can deduct
that monofractal functions are characterized by a linear 7(g) spectrum, with a
unique slope H = 7(g)/q. In contrast, a non-linear 7{g) curve is a signature of
multifractal functions that display multifractal properties: there are many slope
coefficients oy, = 87(g)/8q, depending on where the derivative is calculated on
the 7(g) curve. Measuring the deviation from a simple linear relationship is thus
the crucial issue to determine if a fractal process is monofractal or multifractal.

The WTMM approach is now the foundation of a unified multifractal de-
scription of self-affined distributions, as shown by Muzy et al. (1993). There
are two_obvioys advantages of the WTMM method to the structure function
approach: (1) the scale-adaptive partition (defined by the sup) which prevents
divergencies from showing up in the calculation of Z(g,a) for negative values
of ¢ and (2) the accessibility of the entire range of singularities made possible
me choice of the number of vanishing moments, thus allowing for negative
spectrum values D{ar ).

Mandelbrot nes such negative dimensions as meaguring the empti-
ness of empty sets. The positive D(wy) are shown to define a typical’ distribu-
tion, while the negative —2 < D(«y) < 0 characterize the sampling variability.
Mandelbrot also shows that negative D(ay,) are essential for revealing the gen-
erating process, generalizing it to random multifractals.

/ 4 Empirical Measurement Results>

Two broad categories of departures from a pure scaling model are possible.
First,a scaling exponent might be well defined, although existing nonstation-
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arities may not be of a scaling nature, which leads to a problem of correct

measurement of the constant underlying scaling parameter 7(q).Gecond)there
is the possibility that the scaling changes with time, e.g., the parameters of

constant in-time scaling are not invariant. Special properties of the wavelet
approach allow us to overcome these two challenges.

The problem of variance of the scaling exponent problem (time-varying scal-
ing) can be reduced to a simple model inference problem because of the quasi-
decorrelation in the time-scale or time-frequency plane. Wavelet coefficients
can be treated as almost independent and normally distributed with known
variances.

The log-scale diagram can also be generalized to the study of statistics other
than those of the second order. The resulting g-th order log-scale diagram
contains relevant information to the analysis of scaling beyond the reach of
second-order statistics.

4.1 Inconsistent Hurst Exponent Measurements

To measure the Hurst exponents for the time series of index prices, we imple-
mented two methods: the method of Fleming et al. (2001) and the method based
on the built-in algorithm in Fraclab developed by the French Institute National
de Recherche en Informatique et en Automatique (National Institute for Infor-
mation and Automation Research). Their method is based on discrete wavelet
coefficients. For the first method we developed an algorithm in MATLAB based
on the continuous wavelet transform (CWT) using the Gaussian wavelet with
only two vanishing moments. The results we obtained were not unique. In other
words, each of the two methods did not provide consistent Hurst exponents for
the same data sets, as can be seen in Fig. 3 for the NASDAQ), in Fig. 4 for the
DJIA, and in Fig. 5 for the S&P500 stock market returns using moving win-
dows, computing Hurst exponents for each window. It appears that the CWT
provides smoother and less variable Hurst exponent values than the Fraclab
procedure.

4.2 Multifractal Spectra of Stock Markets>

The non-uniqueness of the computed Hurst exponents provided additional mo-
tivation to attempt to produce MFS calculations. The two methodologies we
used for computing the global Hurst exponents also assign different cutting off
points for finer scales, adding to the non-unique results, It demonstrates that
averaging the risk or irregularity over a longer time period may lead to inaccu-
rate estimates and imprecise fractal models. There is thus an urgent need for
examining the MFS and its dynamics over time, and not to rely on the mea-
surement of a possible monofractal Hurst exponent only, which tends to show
less or more variability over time, depending on which measurement method is

cho
Indeed, the S&P500 stock market price index series exhibit deviations from
linearity of the scaling exponent 7(g) in Fig. 6 suggesting the existence of a MFS,
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instead of one monofractal Hurst exponent. In finance, Corrazza and Malliaris
(2002) have already drawn a similar conclusion for a number of foreign currency
markets.

The MFS is calculated following the aforementioned five-step procedure de-

- scribed in more detail by Los (2003). A MFS can be visualized as an interwoven
149 7 ensemble of independent monofractals each with their own dimension D{ayr) as
seen in Fig. 7. We examined the changes in these multifractal spectra of each
stock market index over time and to detect if there are characteristic levels or
patterns before significant drawdowns. In other words, did the spectrum of Lip-
schitz ars, which characterizes the kind of singularities occurring in a market,

change in the period preceding a major market drawdown?

Monofractal time series display only one regularity exponent ey = H with
dimension D(a)’= 1, defining the Lévy scaling of the underlying stable distribu-
tion If the process is stationary that exponent tends to {, because the underlying
time polynomial is stationary, has constant frequencies and no irregurlarity, un-

certainty, or "randomness”. In that case, no degree of irregularity as measured
by the Hurst exponent remains. A multifractal process displays more than one

Lipschitz-crr , defined by the order of the partition function Z(g,c) and the
empirical existence of irregularities of that order g¢. (Therefore) the existence
of positive higher-than-second-order-moments of ﬂ)'é digtribution of the stock
market time series will be reflected by Lipschitz o ’s smaller than the dominant
urst exponent and by negative higher moments with larger ayr.’s.

bhows an empirical MFS the Lipschitz cz’s. Compare this with

; — 7 the theoretical MFS spectrum in Fig. 8. Where ¢ = U we measure dimension
‘é" D{ay) =1 for the Hurst exponent. Increasing the absolute value of g displays

lower dimensions. For moment order ¢ > 0 we measure the dimensions of the
Lipshitz oy, smaller than the Hurst exponent, while for moment order ¢ < 0 we
measure the doiemnsions of the Lipschitz o larger than the Hurst exponent.
Thus in Flg. 7 we see that the spectrum is skewed to the right towards the

Mﬂ more persistent values of the az’s and has a cutoff point at the values of the
a8 that indicates anti-persistence at the turbulence level close to o; = % In
our program we use partition functions between the order of —5 and T with .5
increments. Therefore, the maximum number of the Lipschitz o ’s computed
for each multifractal spevctrum is 21. The following picture relates the moment
orders ¢ to the MFS D{ay).

_The empirical MFS in Fig. 7 is characterized by a number of Lipschitz oy,
regularity exponents and their respective dimensions. This spectrum allows to
compute a weighted average and a standard deviation of the distribution of
the regularity exponents. The exponent with D(a;) = 1 (= the mode of the
spectrum) is the global Hurst exponent. However, we found that the weighted
average gives more information on the higher moments of the empirical distri-

\? g 10, (f bution of the index prices, which obviously deviates from normal.
"a 19 ¢ Figures 9, 10 and 11 provide information on these weighted averages and
modes of the NASDAQ, DJIA and S&P500 stock market returns, respectively.
Notice that in all cases the mean is smaller than the mode, suggesting that
although globally these markets are mildly persistent as measured by their Hurst
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exponent {MFEF ode) of 0.5 < H < 0.7, their multifractal spectra are skewed/’—\

towards_anti-persistence: the NASDAQ and DJIA stock market returns have
weighted mean Lipschitz o = 0.4.

We also report the minimum and maximum ors as we]l as their range =
maximum - minimum in the following figures. The empirical MES is computed
on a 512-day sliding window with one-day increments. The length of the window
had to be judiciously chosen to allow for the use of finer scales in the wavelet

st

analysis, while at the same time detecting any changes in the MF'S in the period \

before the crash. In the literature patterns have been reported for two to four
years before crashes.

( 4.3 Multifractal Patterns Around Stock Market Crashes>

By plotting these multifractal dimension statistics we expected to identify pat-
terns characterizing the stock price index returns preceding significant market
drawdowng. If such a pattern could be identified. it _would contribute to the
empirical evidence of the possible predictability of market crashes. Jobansen et
al. (1999) proposed that such hypothesized patterns preceding market crashes

are caused by a slow build-up of long-range time dependencies reflecting interac-
tions among traders. Indeed, Hirshleifer and Teoh (2003) anecdotally suggested

the same hypothesis. Thus, we made the identifiability of a pattern preceding
stock market crashes our null hypothesis.

We observe in Fig. 12 for the DJIA that the spread between minimum and
maximum Lipshitz ¢y ’s increases significantly when the day of the crash (e.g.
"October 19, 1987) is included in the calculations of the MFS. It widens both
the range and the dispersion of the MFS. The minimum ¢, drops significantly
and the maximum o7, exhibits several peaks in the days after the crash. Careful
examination of the min/max, as well as dispersion of oy, plots for different stock

market indices allows us to detect ex-post the exact time of the crash, but not a
uniquely identifiable preceding pattern, apparently rejecting our null hypothesis.

Mandelbrot (1991) describes the possibility of the occurrence of "ancmalous"
negative azs that may be a flaw of the methodology based on the partition
function. However, all extracted minimum ¢, from our computations show that
there is no such anomaly in our empirical results, since we did not compute any
negative ay,, although we do find minimum ¢.s close to zero. Notice that there
are soveral large maximum ozs in the (0,2) range, and that thesze larger ays
mostly occur after the crash. S —

By dividing the sum of the dimensions by the average dimension we recover
the number of ¢'s at each point, This provides additional information about
the changes of the MFS and allows a possible normalization of the multifractal
spectra statjstics. The mean/standard deviation of the MFS at each point was
divided by the average dimension.

The shape of the MFS changes over time, therefore we decided to examine
the changes in the skewness of the spectrum by calculating the asymmetry of
the MFS. The asymmetry of the MFS at each point is calculated as the differ-
ence between the weighted average Lipschitz-o;, and the minimum Lipschitz-a g,

15



divided by the range:
3 [D{er).cp] — min{ey)

Oy cé“ e asym = max(eey) — min{eer) (22)

‘-——9 A coefficient close to 0.5 implies a symmetric spectrum. Plots of these asym-

metry coefficients did also not reveal any particular reliable pattern preceding

Changes of the weighted mean and standard deviation of the spectrum of
Lipschitz-c; exponents were plotted in particular for patterns before the crash
of October 19, 1987. Surprisingly such simple statistics of the MFS of NASDAQ),
DJIA and S&P500 index _returns do exhibit a very similar and clearly identifi-
able pattern, as seen inespectively. We find very similar
extended periods of substantial weighted averages of the regularity exponents
combined with low standard deviations of the singularity spectrum. Moreover,
these statistics do_not exhibit the spikes observed in other periods and may
reflect a higher regularity of the pricing processes.

We conjecture that the increased regularity in these market returns is the

r——

result of coordination in the behavior of a large number of agents in the marketQ
that leads to increased order. This is in line with Sornette’s (1998) hypothesis
that a normally functioning market shows a high weighted average value of reg- .
ularity exponents, combined with a narrow spectrum, indicating fairly accurate

global persistence.
A market crash then drops the weighted average value of the regularity expo-’\
nents and combines that with a jump in the digpersion of the spectrum of these
exponents, "Thus preceding a crash the average persistence gradually increases
and there is a fairly narrow range of irregularity. This slowly increasing per-
sistence and more ordered structure - with less dispersion of the "randomness’ ~
in the market pricing process - tends then to lead to a sharp "drawdown."” The
crash itself sharply reduces the depree of persistence of a market and simulta-
neously increases the dispersion or diversity of the irregularity, uncertainty or
[M'randomness" in the stock market, thereby returning it to its "normal" func-

tioning.

1s sugpestsihat in the periods immediately preceding stock market crashes, ~
the degrees of horizon uncertainty or risk experienced by the various market par- %

ticipants become too similar, possibly indicating that the participants all tend

to converge to similar time horizons and thus to similar shapes of stable market
returns distributions. A market crash reduces this too high level of repularity
and persistence in the market. It increases the diversity of risks and the diversity
of time horizons of the market participants, so that the market can normally
function with less persistence and greater "fluidity."
Gutzwiller and Mandelbrot {1988) encountered unusual multifractal mea-
sures omin = 0, and/or omax = 00 in classical Hamiltonian systems that display
“hard chaoe.” This may explain the spikes of the MF'S statistics in a "normally"
functioning stock market, that might otherwise seem unusual, as these excep-
tionally regularity exponents considerably deviate from the usual (0,1) range.
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Furthermore similar patterns preceding the 1987 crash are observed in other

world _indices ]j on’s FTSE, Tokyo’s Nikkei, and Hone Kopg’ g
Seng indices in Figs. 15, 17 and 18, respectively. This may indicate not cnly the

resence of similar MFS patterns i h of these financial markets

existing coordination between the trading jn these international markets. Thus

when we compare the patterns of different stock markets all over the world in

the period preceding the same stock market crash of 1987, we do find similar
identifiable patterns. In other words, not every crash within the same market
may show the same identifiable pattern, because the level and dispersion of
irregularity or "randomness" preceding different crashes vary, since the market
participants have different time horizons and are confronted by different kinds

of infarmation sets.
E_ythe same crash at the same time in different markets does show similar
identifia i ceding the date of the joint crash - a gradual increase

in the weighted average value of the spectrum of Lipschitz ¢y, irregularity ex-
ponents - since the market participants have similar time horizons and are con-
fronted by the same information set. This can is even confirmed by summary
statistics of the windowed multifractal spectra of the Canadian, Australian All
Ordinaries, and Singapore Straits Times index returns. In all these interna-
tional stock markets the average Lipschitz oy, hovers around market neutrality,
Hut shows a clear tendency to move from the anti-persistence to the persistence
range in the period preceding a market crash. In all cases the 1987 crash sharply
pushes the market back to considerable anti-persistent behavior together with
a simultaneous increase in the spectrum of irregularity of the markets.

Johansen et al. (2000) and Johansen (1997) show that the reported patterns can
never oceur in # 107 years using conventional time-series models like Engle’s
GARCH(1,1) model. The frequency of occurrence of drawdowns larger than
15% implies nonrandomness, as is shown by Johansen and Sornette (2001} and as
we have consistentlly chserved. Therefore, we decided to attempt to contribute
additional evidence for the existence of nonlinear patterns in the market price
diffusion process with a methodology that allows for multifractal processes, scale
consistency, and long memory in volatility.

The predictability of prices is not theoretically specified, since the multifrac-
tal model has enough flexibility to satisfy the short term martingale property
in some cases and long memory in its price increments otherwise (Elliott and
vand der Hoek, 2003). The multifractal model of asset returns incorporates fat
tails and several economists now agree that there is no a apriori justification
for rejecting infinite second moments in the markets. There have been too of-
ten discontinuities in the world’s stock markets to justify constant or even finite
variances. In fact it is found that the monofractal Hurst exponent of the S&P500
H= %, implying a stability exponent of az = 1/H = -‘} This stability value
indicates that even the S&P500 portfolio rates of return have no convergent or
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existent" volatility value. The volatility "wanders" over time, thereby making
it a very questionable underlying asset for consistent option pricing.

The multifractal model exhibits long memory. The FBM is useful for mod-
eling the tendency of price changes to be followed by changes in the same (or
opposite) direction. Mandelbrot et al. (1997} assert that the FBM captures nei-
ther fat tails nor fluctuations in volatility that are unrelated to the predictability
of future returns. This methodology is a promising alternative to (G)ARCH-
type models, because such models have finite second and fourth moments that
can’t model the long memory phenomenon.

We started our search for identifiable patterns in the period immediately
preceding the market crash of October 19, 1987, as complex dynamical systems
tend to reveal their structure and organization better in extreme conditions.?
We developed an algorithm for calculating the MFS of financial market time
series and examined the changes in the financial market price diffusion process
using wavelet multiresolution analysis, as suggested by Los (2003), since wavelet
MRA is used with great success by signal processing engineers.

Wavelet multiresolution analysis of time series of financial market returns
yields a time-frequency analysis with contracted and dilated versions of a chosen
prototype wavelet basis (Fleming et al., 2001). The application of wavelet MRA
enables us, first, to perform time - scale or time - frequency analysis and, second,
to achieve de-noising of the data for better detection of patterns. Wavelet
MRA is most useful, when the time series exhibits sharp spikes and jumps, a
situation typical for stock market crashes. Wavelets can be used not only to
identify the localizations, magnitudes and Lipschitz characterizations of these
singularities, but also to analyze the actual recovery of the market price diffusion
process. In terms of financia! time series, wavelets appear to be more robust
in analyzing market indices around crashes compared with the conventional
numerical analysis with several free parameters, as has been used by classical
physicists.

Our research identified coherent patterns of change in the MFS of stock
market indices before significant drawdowns. The exact mathematical repre-
sentation or model of these patterns has not yet been identified, because they
thend to differ from crash to crash, although they are cross-sectionally similar
at the same time. The differences in the multifractal spectra between periods
around market crashes and periods of 'normal’ market behavior might be due to
the differences in the types of singularities and their respective dimensions. The
classical multifractal formalism applied in this study is accurate for cusp type
singularities we observe in the stock market, while the so called time-varying
chirps of slowly varying volatilities tend to be underestimated.

If log-periodic oscillations appear in the irregularities before market crashes
they can possibly be detected with grand canonical multifractal formalism based
on complex wavelets, i.e., on wavelets with real and imaginary parts. Such an
analytic approach requires a two dimensional partition function and results in

3We also looked at many other stock market crashes, defined as 15% or larger drawdowns
within a short period of a few days, and found similar identifiable patterns.
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a three dimensional MFS, with a real value axis, an imaginary value axis, and
an Hausdorff dimension axis. The plane projection of this complex MFS in the
real plane that we have used in this paper is shown to be of the same shape,
but slightly to the right of its classical counterpart. Arnéodo et al. (1997) show
that the projection of the grand canonical MFS is shifted to the right relative
to the classical multifractal formalism.

In other words, the real multifractal spectra computed by us tend to show
somewhat less persistence in the stock markets than there actually exists, espe-
cially in the presence of oscillating singularities, There ig more persistence in
the stock markets than we were able to identify with cur simple two-dimensional
multifractal spectra (MFS). Thus the recently proposed complex MFS approach
is expected to even further increase the average Lipschitz-cy irregularity expo-
nent valueds, accentuating the patterns identified in this paper. The results
obtained with our classical multifractal formalism therefore do not exclude the
appearance of log-periodic oscillations before market crashes (which is still an
open empirical research question), but only point to the differences in the cusp
singularity composition between periods around crashes and periods of normally
functioning markets.

As far as we have been able to detect in the literature, we are the first to
apply our real-plane MFS measurements to stock market data. Our method
is aimed at detecting irregularity patterns of index price dynamics preceding
market crashes. We attempt a variety of measurements to track the changes in
the computed multifractal spectra over time. Difficulties for comparison arise
from changes in the distance from the ay-axis, the spread, the concavity of the
Lipschitz-ce;,’s MFS and the number of observed irregularity exponents for each
window.

As we computed the weighted average and standard deviation for those mul-
tifractal spectra in ’classical statistical sense,’ the negative fractality measured
by the maximum Lipschitz-¢;,’s showed on the plots as frequent spikes observed
predominantly in "normal’ markets. The presence of negative dimensions re-
veals the randomness of the multifractals as explained by Mandelbrot {1990}.
The absence of such jumps in the periods before crashes points on some type of
hierarchical structure and less "randomness."

The methodological approach developed in this paper provides information
for analysis and comparison of the episodes of market crashes and the subse-
quent recovery patterns in different stock markets. The patterns identified by us
reveal relationships between the magnitude of the crash, degree of persistence
of the stock market, and the impact of the crash on the financial system. The
observed coherent patterns suggest that there is a measurable build-up of mar-
ket pressure - an increase of the market’s degree of persistence and reduction
in its "randomness’ - leading to a crash. They also show a worldwide coordina-
tion or sharing of these kinds of pressures among the markets before the crash
of October 1987, because all stock markets we studied show the same pattern
preceding this particular crash.

QOur hypothesis is that the increase of regularity and the low diversity of fi-
nancial multifractality, indicated by a higher mean and a low standard deviation
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of the MFS, as well as by precursory absence of multifractal randomness, reflects
an increased dependence between the actions of the various market participants.
In contrast, the crash drastically reduces the average degree of persistence of
a stock market, and it increases the prevalence and the diversity of its irregu-
larity or "randomness" necessary for the normal functioning of a stock market.
Apparently a stock market cannot exhibit too much order and structure, persis-
tence and predictability, because then it will have a tendency to crash. Reduced
persistence and greatest diversity of irregular behavior appears to provide the
smoothest functoning of a stock market. Thus the introduction of more rules,
regulations and institutional restrictions in a stock market, which make it more
persistent, only enhances its tendency towards crashing (Danielson and Zigrand,
2001).
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